Optimal Control of Delayed Differential-Algebraic Inclusions
نویسندگان
چکیده
This paper concerns constrained dynamic optimization problems governed by delayed differentialalgebraic systems. Dynamic constraints in such systems, which are particularly important for engineering applications, are described by interconnected delay-differential inclusions and algebraic equations. We pursue a two-hold goal: to study variational stability of such control systems with respect to discrete approximations and to derive necessary optimality conditions for both delayed differential-algebraic systems and their finite-difference counterparts using modern tools of variational analysis and generalized differentiation. We are not familiar with any results in these directions for differential-algebraic inclusions even in the delay-free case. In the first part of the paper we establish the value convergence of discrete approximations as well as the strong convergence of optimal arcs in the classical Sobolev space W 1 •2 • Then using discrete approximations a vehicle, we derive necessary optimality conditions for delayed differential-algebraic inclusions in both Euler-Lagrange and Hamiltonian forms via basic generalized differential constructions of variational analysis.
منابع مشابه
Optimal Control of Neutral Functional-Differential Inclusions Linear in Velocities
This paper studies optimal control problems for dynamical systems governed by neutral functional-differential inclusions that linearly depend on delayed velocity variables. Developing the method of discrete approximations, we derive new necessary optimality conditions for such problems in both EulerLagrange and Hamiltonian forms. The results obtained are expressed in terms of advanced generaliz...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملOptimal control of constrained delay - differential inclusions with multivalued initial conditions
This paper studies a general optimal control problem for nonconvex delay-differential inclusions with endpoint constraints. In contrast to previous publications on this topic, we incorporate time-dependent set constraints on the initial interval, which are specific for systems with delays and provide an additional source for optimization. Our variational analysis is based on well-posed discrete...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملNumerical solution of optimal control problems by using a new second kind Chebyshev wavelet
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
متن کامل